Selection principles and dense sets

Santi Spadaro

Ben Gurion University of the Negev (Supported by the Center for Advanced Studies in Mathematics) santi@bgu.ac.il

> Winter School in Abstract Analysis Hejnice, Czech Republic, 2011

• (X, τ) always denotes a Hausdorff (T_2) topological space.

- (X, τ) always denotes a Hausdorff (T_2) topological space.
- A π-base for (X, τ) is a dense set in the POSET (τ \ {∅}, ⊆).

- (X, τ) always denotes a Hausdorff (T_2) topological space.
- A π -base for (X, τ) is a dense set in the POSET $(\tau \setminus \{\emptyset\}, \subseteq)$.
- A set E ⊂ X is discrete if for every x ∈ E there is an open U ⊂ X such that U ∩ E = {x}.

- (X, τ) always denotes a Hausdorff (T_2) topological space.
- A π -base for (X, τ) is a dense set in the POSET $(\tau \setminus \{\emptyset\}, \subseteq)$.
- A set E ⊂ X is *discrete* if for every x ∈ E there is an open U ⊂ X such that U ∩ E = {x}.
- (Spread of X) $s(X) = \sup\{|D| : D \subset X \text{ is discrete }\}.$

- (X, τ) always denotes a Hausdorff (T_2) topological space.
- A π -base for (X, τ) is a dense set in the POSET $(\tau \setminus \{\emptyset\}, \subseteq)$.
- A set E ⊂ X is *discrete* if for every x ∈ E there is an open U ⊂ X such that U ∩ E = {x}.
- (Spread of X) $s(X) = \sup\{|D| : D \subset X \text{ is discrete }\}.$
- C_p(X,2) = {f ∈ 2^X : f is continuous }, with the relative topology from 2^X.

- (X, τ) always denotes a Hausdorff (T_2) topological space.
- A π -base for (X, τ) is a dense set in the POSET $(\tau \setminus \{\emptyset\}, \subseteq)$.
- A set E ⊂ X is discrete if for every x ∈ E there is an open U ⊂ X such that U ∩ E = {x}.
- (Spread of X) $s(X) = \sup\{|D| : D \subset X \text{ is discrete }\}.$
- C_p(X,2) = {f ∈ 2^X : f is continuous }, with the relative topology from 2^X.

Theorem

(Hewitt-Marczewski-Pondiczery Light) 2^{κ} is separable, for every $\kappa \leq \mathfrak{c}$.

- (X, τ) always denotes a Hausdorff (T_2) topological space.
- A π -base for (X, τ) is a dense set in the POSET $(\tau \setminus \{\emptyset\}, \subseteq)$.
- A set E ⊂ X is *discrete* if for every x ∈ E there is an open U ⊂ X such that U ∩ E = {x}.
- (Spread of X) $s(X) = \sup\{|D| : D \subset X \text{ is discrete }\}.$
- C_p(X,2) = {f ∈ 2^X : f is continuous }, with the relative topology from 2^X.

Theorem

(Hewitt-Marczewski-Pondiczery Light) 2^{κ} is separable, for every $\kappa \leq \mathfrak{c}$.

Proof.

 $C_p(2^{\omega},2)$ is a dense countable subset of $2^{2^{\omega}}=2^{\mathfrak{c}}$.

- **(())) (())) ())**

A selective version of separability

Definition

(Scheepers) A space X is R-separable if for any sequence $\{D_n : n < \omega\}$ of dense sets you can pick points $x_n \in D_n$ such that $\{x_n : n < \omega\}$ is dense.

A selective version of separability

Definition

(Scheepers) A space X is R-separable if for any sequence $\{D_n : n < \omega\}$ of dense sets you can pick points $x_n \in D_n$ such that $\{x_n : n < \omega\}$ is dense.

 $\pi w(X) = \aleph_0 \Rightarrow R$ -separable $\Rightarrow \delta(X) = \aleph_0$ (i.e., every dense set is separable).

A selective version of separability

Definition

(Scheepers) A space X is R-separable if for any sequence $\{D_n : n < \omega\}$ of dense sets you can pick points $x_n \in D_n$ such that $\{x_n : n < \omega\}$ is dense.

 $\pi w(X) = \aleph_0 \Rightarrow R$ -separable $\Rightarrow \delta(X) = \aleph_0$ (i.e., every dense set is separable).

Example

A countable non-*R*-separable space.

Proof.

- $X = Fn(\omega, \omega)$.
- $F \in X$, $\mathcal{F} \in [\omega^{\omega}]^{<\omega}$, $V(F, \mathcal{F}) := \{G \in X : G \supset F \land (\forall f \in \mathcal{F}) (\forall n \in domG \setminus domF)(G(n) \neq f(n))\}$
- Declare the Vs to be a local base at F.
- $D_n = \{F \in X : n \in dom(F)\}$ is dense, but no selection clusters to \emptyset .

 $cov(\mathcal{M})$ =minimum number of meager sets needed to cover \mathbb{R} .

> < 3 >

 $cov(\mathcal{M})$ =minimum number of meager sets needed to cover \mathbb{R} .

Theorem

(Bella, Bonanzinga and Matveev) If $\kappa = \pi w(X) < cov(\mathcal{M})$ and $\delta(X) = \omega$ then X is R-separable.

 $cov(\mathcal{M})$ =minimum number of meager sets needed to cover \mathbb{R} .

Theorem

(Bella, Bonanzinga and Matveev) If $\kappa = \pi w(X) < cov(\mathcal{M})$ and $\delta(X) = \omega$ then X is R-separable.

Proof.

• (Arnie Miller, 1982) $cov(\mathcal{M})$ minimum size of a subfamily of ω^{ω} which cannot be guessed.

A (10) F (10) F (10)

 $cov(\mathcal{M})$ =minimum number of meager sets needed to cover \mathbb{R} .

Theorem

(Bella, Bonanzinga and Matveev) If $\kappa = \pi w(X) < cov(\mathcal{M})$ and $\delta(X) = \omega$ then X is R-separable.

Proof.

- (Arnie Miller, 1982) $cov(\mathcal{M})$ minimum size of a subfamily of ω^{ω} which cannot be guessed.
- $D_n = \{d_{n,m} : m < \omega\}$ countable dense. $\{B_\alpha : \alpha < \kappa\}$ a π -base.
- $f_{\alpha}(n) = \min\{m : d_{nm} \in B_{\alpha}\}.$
- Take f guessing all the f_{α} 's.
- Then $\{x_{n,f(n)} : n < \omega\}$ is dense in X.

(日) (同) (三) (三)

 $cov(\mathcal{M})$ is the least size of a subset of $\mathbb R$ which does not have strong measure zero.

- 4 ∃ ≻ 4

 $cov(\mathcal{M})$ is the least size of a subset of \mathbb{R} which does not have strong measure zero.

Theorem

(Bella, Bonanzinga and Matveev) $2^{cov(\mathcal{M})}$ contains a dense countable non-R-separable space.

 $cov(\mathcal{M})$ is the least size of a subset of $\mathbb R$ which does not have strong measure zero.

Theorem

(Bella, Bonanzinga and Matveev) $2^{cov(\mathcal{M})}$ contains a dense countable non-R-separable space.

Proof.

- Work on 2^X , where $X \subset \mathbb{R}$ strong non-measure zero set of minimal size.
- Only 2 Not strong measure zero ⇐⇒ (∃{ϵ_n : n < ω})(X ⊈ {U_n : n < ω}) whenever μ(U_n) < ϵ_n).
- So Let \mathcal{B}_n be the set of all traces on X of finite unions of intervals with rational endpoints of measure $< \epsilon_n$.
- Let $D_n = \{\chi_B : B \in \mathcal{B}_n\}.$
- So each D_n is dense, but $(D_n : n < \omega)$ has no dense selection.

 κ₁ := the least cardinal κ such that 2^κ contains a countable non-*R*-separable dense subspace.

• $\kappa_1 = cov(\mathcal{M})$

< ∃ > <

- κ₁ := the least cardinal κ such that 2^κ contains a countable non-*R*-separable dense subspace.
- $\kappa_1 = cov(\mathcal{M})$
- $\kappa_2 :=$ the least cardinal κ such that 2^{κ} is not *R*-separable.

- κ₁ := the least cardinal κ such that 2^κ contains a countable non-*R*-separable dense subspace.
- $\kappa_1 = cov(\mathcal{M})$
- $\kappa_2 :=$ the least cardinal κ such that 2^{κ} is not *R*-separable.
- $\kappa_2 = \omega_1$

- κ₁ := the least cardinal κ such that 2^κ contains a countable non-*R*-separable dense subspace.
- $\kappa_1 = cov(\mathcal{M})$
- $\kappa_2 :=$ the least cardinal κ such that 2^{κ} is not *R*-separable.
- $\kappa_2 = \omega_1$
- because $\sigma(2^{\omega_1}) = \{f \in 2^{\omega_1} : |supp(f)| < \omega\}$ is dense in 2^{ω_1} but not separable.

A more discreet version of *R*-separability

Definition

A space is *D*-separable if for every sequence $\{D_n : n < \omega\}$ of dense sets there are discrete sets $E_n \subset D_n$ such that $\bigcup_{n < \omega} E_n$ is dense.

Definition

A space is *d*-separable if it has a σ -discrete dense set.

 σ -disjoint π -base \Rightarrow D-separability \Rightarrow d-separability.

• *d*-separability was introduced by Kurepa in his PhD thesis.

- d-separability was introduced by Kurepa in his PhD thesis.
- (Arhangel'skii) $\prod_{i \in I} X_i$ is *d*-separable whenever every X_i is *d*-separable.
- (Matveev) $X^{2^{d(X)}}$ is never *D*-separable.

- d-separability was introduced by Kurepa in his PhD thesis.
- (Arhangel'skii) $\prod_{i \in I} X_i$ is *d*-separable whenever every X_i is *d*-separable.
- (Matveev) $X^{2^{d(X)}}$ is never *D*-separable.
- (trivial) If $X = \bigcup_{i < n} X_i$ and every X_i is *d*-separable then X is *d*-separable.
- (non-trivial) If $X = \bigcup_{i < n} X_i$ and every X_i is *D*-separable then X is *D*-separable.

- *d*-separability was introduced by Kurepa in his PhD thesis.
- (Arhangel'skii) $\prod_{i \in I} X_i$ is *d*-separable whenever every X_i is *d*-separable.
- (Matveev) $X^{2^{d(X)}}$ is never *D*-separable.
- (trivial) If $X = \bigcup_{i < n} X_i$ and every X_i is *d*-separable then X is *d*-separable.
- (non-trivial) If $X = \bigcup_{i < n} X_i$ and every X_i is *D*-separable then X is *D*-separable.
- For every space X there is a space Y such that $X \times Y$ is D-separable.

- d-separability was introduced by Kurepa in his PhD thesis.
- (Arhangel'skii) $\prod_{i \in I} X_i$ is *d*-separable whenever every X_i is *d*-separable.
- (Matveev) $X^{2^{d(X)}}$ is never *D*-separable.
- (trivial) If $X = \bigcup_{i < n} X_i$ and every X_i is *d*-separable then X is *d*-separable.
- (non-trivial) If $X = \bigcup_{i < n} X_i$ and every X_i is *D*-separable then X is *D*-separable.
- For every space X there is a space Y such that $X \times Y$ is D-separable.
- There are countable non-*D*-separable spaces.

A D A D A D A

"Forcing" a countable non *D*-separable space (Soukup)

Let \mathcal{D} be a collection of dense sets in X.

Definition

A \mathcal{D} -mosaic is a set of the form $\bigcup_{U \in \mathcal{U}} U \cap D_U$, where $D_U \in \mathcal{D}$ and \mathcal{U} is a maximal pairwise disjoint family of open sets.

Definition

A space is \mathcal{D} -forced if every dense set contains a \mathcal{D} -mosaic.

Theorem

(Juhász, Soukup and Szentmiklóssy) There are countable $\mathcal D$ -forced dense subspaces $2^{\mathfrak c}$

通 ト イヨ ト イヨト

• $cos = min\{\kappa : 2^{\kappa} \text{ contains a countable non-}D\text{-separable subspace}\}.$

- $c\mathfrak{ds} = \min\{\kappa : 2^{\kappa} \text{ contains a countable non-}D\text{-separable subspace}\}.$
- $\omega_1 \leq \mathfrak{cds} \leq \mathfrak{c}$.
- What is cds?

A (10) A (10)

- c∂s = min{κ : 2^κ contains a countable non-D-separable subspace}.
- $\omega_1 \leq \mathfrak{cds} \leq \mathfrak{c}$.
- What is cds?
- $\mathfrak{ds} = \min\{\kappa : 2^{\kappa} \text{ is not } D\text{-separable }\}.$

- ∢ ∃ ▶

- cds = min{κ : 2^κ contains a countable non-D-separable subspace}.
- $\omega_1 \leq \mathfrak{cds} \leq \mathfrak{c}.$
- What is cds?
- $\mathfrak{ds} = \min\{\kappa : 2^{\kappa} \text{ is not } D \text{-separable } \}.$

Theorem

 $\mathfrak{ds} \leq \omega_2.$

- cds = min{κ : 2^κ contains a countable non-D-separable subspace}.
- $\omega_1 \leq \mathfrak{cds} \leq \mathfrak{c}$.
- What is cds?

Theorem

 $\mathfrak{ds} \leq \omega_2.$

Proof.

- **(**Juhász? Szentmiklóssy?) There is a Strong $\aleph_2 HFD_w$.
- $(\exists X)(\forall n)(s(X^n) = \aleph_1 \land d(C_p(X,2)) = |X| = \aleph_2).$
- Solution Section Assume $C_p(X,2)$ is *d*-separable. Then $s(C_p(X,2)) = \aleph_2$.
- $s(C_p(X,2)) = \aleph_2 \to (\exists n)(s(X^n) = \aleph_2).$

(日) (周) (三) (三)

Products I

Theorem

(CH) There are countable R-separable spaces X and Y such that $X \times Y$ is not D-separable.

Theorem

Let X be any space and Y be a space such that for some $j < \omega$, $\hat{c}(Y^j) \ge \pi w(Y) \ge \pi w(X)$. Then $X \times Y^{\mu}$ has a σ -disjoint π -base for every $\mu \in [\omega, \kappa]$.

Corollary

For every X there is Y such that $X \times Y$ has a σ -disjoint π -base.

Proof.

If
$$\kappa = \pi w(X)$$
, simply choose $Y = D(\kappa)^{\omega}$.

Products II

Theorem

Let X be any space and Y be a space such that for some $j < \omega$, $\hat{c}(Y^j) \ge \pi w(Y) \ge \pi w(X)$. Then $X \times Y^{\mu}$ has a σ -disjoint π -base for every $\mu \in [\omega, \kappa]$.

Corollary

If X is a LOTS, then X^{μ} has a σ -disjoint π -base, for every $\mu \in [\omega, d(X)]$.

Proof.

A result of Petr Simon from 1973 says that X^2 has a cellular family of size $d(X) = \pi w(X)$. Now $(X^2)^{\mu} = X^{\mu}$ for μ infinite.

< 回 > < 三 > < 三 >

Thank you!

A. Bella, M. Matveev and S. Spadaro, *Variations of selective separability II: discrete sets and the influence of convergence and maximality*, submitted (http://arxiv.org/abs/1101.4615).